
Bonus Chapter 2

Formatting with CSS
In This Chapter
▶ Getting used to CSS

▶ Managing color with CSS

▶ Changing text fonts and styles

▶ Adding borders and backgrounds to page elements

▶ Building multi-column forms with floating formats

▶ Creating absolutely positioned elements

XHTML is a powerful technology, but modern Web pages require a com-

bination of XHTML and Cascading Style Sheets (CSS). This technology

works alongside XHTML. While XHTML is used to provide the basic frame-

work and content, CSS is used to specify the visual aspects of the page.

Introduction to CSS
Early forms of HTML paid very little attention to the visual aspects of page

layout. The original plan was for HTML to be more tied to the meaning of

page elements rather than their display. In the very early days of the Web,

this was fine, but soon people wanted far more sophisticated design elements

than HTML was capable of producing. Browser manufacturers responded by

adding vendor-specific tags that added new capabilities but greatly compli-

cated development efforts.

XHTML is an attempt to return HTML to its earlier simplicity. In the strict

form of XHTML, all the tags that were used to directly manage the appear-

ance of the page (tags like , <center>, , and <i>) are removed.

Rather than having special tags indicate formatting, a new language has been

devised that can provide very powerful formatting features to virtually any

HTML or XHTML tag. CSS is this language.

417997-bc02.indd BC1417997-bc02.indd BC1 11/3/09 9:50 AM11/3/09 9:50 AM

BC2 JavaScript & AJAX For Dummies

Overview of CSS
CSS works by describing certain parts of the page (one particular tag, all the

tags of a specific type, or all tags sharing a particular characteristic). For

each of these tag groups, you can then identify a number of rules. Each rule is

a name/value pair. Take a look at the simple page displayed in Figure BC2-1.

Figure BC2-1:
 This page
uses CSS
to change

the default
colors.

The code to produce this page is shown here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>cssColors.html</title>
 <style type = «text/css»>
 body {
 background-color: yellow;
 }

 h1 {
 color: red;

417997-bc02.indd BC2417997-bc02.indd BC2 11/3/09 9:50 AM11/3/09 9:50 AM

BC3 Bonus Chapter 2: Formatting with CSS

 }

 p {
 color: blue;
 background-color: white;
 }
 </style>

</head>
<body>
 <h1>CSS Colors</h1>

 <p>
 The heading is red, this paragraph is blue on white,

and the page background is yellow
 </p>
</body>
</html>

The new elements are not terribly surprising, but they are quite powerful.

Note that the colors are changed without changing anything in the HTML

body. All the real action happens in a special part of the header. This is part

of the charm of CSS. It makes your HTML a lot cleaner, because much of the

formatting can go elsewhere. Here’s how to add color formatting (or any CSS,

for that matter) to your pages:

 1. Begin with clean, valid HTML code.

 Be sure your HTML or XHTML code validates before you try to do too

much else with it. Improper HTML won’t always respond to CSS the way

you think it should.

 2. Add a <style> tag to the page heading

 The <style> tag allows you to add a style sheet (a list of formatting

instructions) directly on the page. See the “Managing levels of CSS” sec-

tion later in this chapter for how to put style sheets in other places.

 3. Set the style’s type to text/css.

 The only value you’ll ever use for style type is text/css.

 4. Indicate the tag you want to modify.

 The first tag I change is the body. Changes to the body tag will affect the

entire visible part of the page, so this is a great place to start. Just type

the tag name (without the angle braces).

 5. Use squiggly braces ({}) to enclose the rules for this style.

 You might have several rules to describe how the body should be dis-

played. For each style, you’ll need to enclose all the rules in a pair of

braces.

417997-bc02.indd BC3417997-bc02.indd BC3 11/3/09 9:50 AM11/3/09 9:50 AM

BC4 JavaScript & AJAX For Dummies

 6. Denote the background-color attribute.

 Every rule consists of an attribute and a value. The attribute is a built-in

characteristic of the element, and the value is what value we want to give

that attribute. For now, change the background color of the background,

so type background-color:. Note that you must end the attribute name

with a colon (:). Capitalization and spelling count, so be careful.

 7. Indicate the value you want to apply to the attribute.

 For this example, I want a yellow background, so I just type the value

yellow; after the attribute background-color:. Doing so sets the

body’s background color to yellow.

 8. End each value with a semicolon (;).

 Every value must end with a semicolon. If one tag has a lot of rules

(which is common), the semicolons help the browser separate all the

various rules from each other.

 9. Change the foreground color with the color attribute.

 Note how I make the level-1 headline red: I set h1 as the new tag, and set

its color attribute to the value red.

 10. One tag can have multiple rules.

 Take a look at the rules for the paragraph (p) tag. You’ll see that I set

both the foreground and background colors.

 You learn more about which colors can be used in the following section called

(cleverly enough) “Working with colors.” For now, though, just play around

with the various color names. Most of the common color names will work just

like you expect. When you want a fancier color, you’ll have to learn how to use

the fancy hex codes described in that section.

Working with colors
CSS has a rich mechanism for working with colors. Whenever you want to

specify a color, you can simply type the color name. Figure BC2-2 demon-

strates the 16 color names that CSS understands.

Of course, a page that demonstrates colors won’t be very useful in a black-

and-white book, so you’ll definitely want to view this page (and all the others

in this book) in color on the companion Web site at www.aharrisbooks.
net/jad/.

417997-bc02.indd BC4417997-bc02.indd BC4 11/3/09 9:50 AM11/3/09 9:50 AM

BC5 Bonus Chapter 2: Formatting with CSS

Figure BC2-2:
 The color

names
understood

in CSS.

The namedColors.html page featured in Figure BC2-2 has another trick up

its sleeve. Take a look at the source code and you’ll see what I mean:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>namedColors.html</title>
 </head>

 <body>
 <h1>Named Colors</h1>
 <table border=»1»>

 <tr>
 <th>color name</th>
 <th>color value</th>
 </tr>

 <tr>
 <td>aqua</td>
 <td style=»background-color: aqua;»>
</td>
 </tr>

 <tr>

417997-bc02.indd BC5417997-bc02.indd BC5 11/3/09 9:50 AM11/3/09 9:50 AM

BC6 JavaScript & AJAX For Dummies

 <td>black</td>
 <td style=»background-color: black;»>
</td>
 </tr>

 <tr>
 <td>blue</td>
 <td style=»background-color: blue;»>
</td>
 </tr>

 <tr>
 <td>fuchsia</td>
 <td style=»background-color: fuchsia;»>
</td>

 </tr>

 <tr>
 <td>gray</td>
 <td style=»background-color: gray;»>
</td>
 </tr>

 <tr>
 <td>green</td>
 <td style=»background-color: green;»>
</td>
 </tr>

 <tr>
 <td>lime</td>
 <td style=»background-color: lime;»>
</td>
 </tr>

 <tr>
 <td>maroon</td>
 <td style=»background-color: maroon;»>
</td>
 </tr>

 <tr>
 <td>navy</td>
 <td style=»background-color: navy;»>
</td>
 </tr>

 <tr>
 <td>olive</td>
 <td style=»background-color: olive;»>
</td>
 </tr>

 <tr>
 <td>purple</td>
 <td style=»background-color: purple;»>
</td>
 </tr>

 <tr>
 <td>red</td>
 <td style=»background-color: red;»>
</td>

417997-bc02.indd BC6417997-bc02.indd BC6 11/3/09 9:50 AM11/3/09 9:50 AM

BC7 Bonus Chapter 2: Formatting with CSS

 </tr>

 <tr>
 <td>silver</td>
 <td style=»background-color: silver;»>
</td>
 </tr>

 <tr>
 <td>teal</td>
 <td style=»background-color: teal;»>
</td>
 </tr>

 <tr>
 <td>white</td>
 <td style=»background-color: white;»>
</td>

 </tr>

 <tr>
 <td>yellow</td>
 <td style=»background-color: yellow;»>
</td>
 </tr>
 </table>
 </body>
</html>

This page uses a table to demonstrate all the colors recognized by CSS. Next

to the color name is a table cell with the background color set to that color.

Note that in this case, rather than having one large style sheet at the top of

the document, I added several smaller styles directly inside the body of the

HTML page. This technique is called local styles.

Most HTML tags have an attribute called style. You can add CSS rules

directly to this style if you want. To make the aqua-colored cell, for example,

look at the following code:

<td style=”background-color: aqua;”>
</td>

 Local styles are easy to use, but they aren’t perfect. They tend to clutter up

the HTML code, which was exactly what CSS was trying to avoid. Still, the

technique is useful in a few circumstances, like this example. Local styles are

used quite a bit in animation, so you see them again in Chapter 8.

Using ids and classes
CSS is pretty useful because it allows you to quickly add a style to all the

elements of a particular type. For example, you can very easily make all the

paragraphs on a page have the same color. But what if you only want to apply

a style to a single element? And what if you have two kinds of paragraphs

that should have different styles?

417997-bc02.indd BC7417997-bc02.indd BC7 11/3/09 9:50 AM11/3/09 9:50 AM

BC8 JavaScript & AJAX For Dummies

Figure BC2-3 illustrates the CSS way to solve exactly these problems.

Figure BC2-3:
 This page
has three
different

paragraph
styles!

The CSSLevels.html page mainly consists of paragraphs, but there are

three different paragraph styles. Ordinary paragraphs are light blue with dark

blue letters. There are two special kinds of paragraphs. One paragraph has a

special name: fancy. The fancy paragraph has its own styling. There is only

one fancy paragraph, but there are two paragraphs using the alternate

style. Take a look at the code and then I explain how it all works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>CSSLevels.html</title>
 <style type = «text/css»>
 p {
 background-color: lightblue;
 color: blue
 }

 #fancy {
 background-color: black;

417997-bc02.indd BC8417997-bc02.indd BC8 11/3/09 9:50 AM11/3/09 9:50 AM

BC9 Bonus Chapter 2: Formatting with CSS

 color: white;
 }

 .alternate {
 background-color: blue;
 color: lightblue;
 }

 </style>
</head>

<body>
 <h2>CSS Selectors</h2>
 <p id = «fancy»>
 This paragraph has fancy styling.
 </p>

 <p>
 This is a regular paragraph
 </p>

 <p class = «alternate»>
 This is an alternate paragraph
 </p>

 <p>
 This is a regular paragraph
 </p>

 <p class = «alternate»>
 This is an alternate paragraph
 </p>

</body>
</html>

First, take a look at the HTML. It’s almost the same, but I’ve added some spe-

cial indicators to some of the paragraphs:

 ✓ Ordinary paragraphs. These paragraphs don’t require any special fea-

tures. They will be styled according to the regular p style rule.

 ✓ Named paragraphs. The first paragraph has an id property. This prop-

erty allows you to specify a name for any HTML object. The id must be

unique — that is, only one object on-screen can have any particular id.

The id can be anything you want, but it should be one word without

spaces or punctuation. If an object has an id property, you can apply a

style to that particular id.

 ✓ Paragraphs in a class. In addition to the id property, you can assign a

class to any HTML element. The class attribute allows you to indicate

that an element is a member of a particular class. Unlike the id, you

can have as many elements in the same class as you want. The alternate

417997-bc02.indd BC9417997-bc02.indd BC9 11/3/09 9:50 AM11/3/09 9:50 AM

BC10 JavaScript & AJAX For Dummies

paragraphs all have the class attribute set to alternate. You can use

any term you want as a class name, but it should not have spaces or

punctuation. You can apply a style to all elements with a certain class.

Different kinds of elements can all have the same class, so you can apply

the same class to paragraphs and headings if you want.

After you’ve applied id properties and classes in the HTML, you can modify

the CSS code to apply styles to the various elements.

Use the number sign (#) in front of the id in your CSS to indicate you want to

style an element with that id. For example, this code styles anything with the

id fancy:

#fancy {
 background-color: black;
 color: white;
}

Use the period in front of a class name to define a style for a particular class.

For example, you can style all elements of the alternate class with this code:

.alternate {
 background-color: blue;
 color: lightblue;
}

Use the id approach when you want to apply a style to an individual element

in the page. Use the tag name when you want to attach a style to all the ele-

ments of a certain type. Use the class mechanism when you want to attach

to a number of elements that might or might not be the same type.

Managing levels of CSS
CSS code can be added to a page in three different ways:

 ✓ Locally inside the HTML body. You can apply a style directly to most

HTML tags using the style attribute. This technique is illustrated in the

section, “Working with local styles,” earlier in this chapter.

 ✓ At the page level in the header. This technique uses a <style></
style> pair inside the head of the HTML page. This is a good way to

specify styles for a specific page.

 ✓ In an external document. A style can be specified in a separate docu-

ment and then referenced from a Web page. This approach allows you to

share a set of style rules among several pages. It also cleans up the main

page, as the styles are moved out of the way.

Figure BC2-4 demonstrates a simple page that uses an external style sheet:

417997-bc02.indd BC10417997-bc02.indd BC10 11/3/09 9:50 AM11/3/09 9:50 AM

BC11 Bonus Chapter 2: Formatting with CSS

Figure BC2-4:
 This page

pulls its
style from

another
document.

When you look at the source code, you’ll see no CSS at all:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <link rel = «stylesheet»
 type = «text/css»
 href = «externStyle.css» />

 <title>externStyle.html</title>
</head>
<body>
 <h1>This page uses an external style</h1>

 <p>
 No styles are defined directly in the page.
 They are called in from a separate file, which
 can be re-used by other pages.
 </p>
</body>
</html>

417997-bc02.indd BC11417997-bc02.indd BC11 11/3/09 9:50 AM11/3/09 9:50 AM

BC12 JavaScript & AJAX For Dummies

The interesting thing about this listing is how the page clearly has a style, but

the style information is not directly present on the page. The secret is the

link tag in the header. This tag allows you to bring in a style from a separate

page. To build an external link, follow these steps:

 1. Add a <link> tag in the header.

 The <link> tag allows you to associate another file with the current

page. It is very useful for attaching a style sheet to a Web page.

 2. Set the rel attribute to stylesheet.

 The rel attribute specifies the nature of the external file. Use the

stylesheet value to indicate you are attaching a style to the page.

 3. Set the type to text/css.

 Linked styles are indicated as text/css in the same way as embedded

styles (the ones created with the <style> tag.)

 4. Specify the location of the style sheet with the href attribute.

 Use the href attribute to indicate where the style sheet is on the file

system. It’s normally best to use a relative reference for style sheets. This

allows you to move the page and the style sheet to the server together.

 5. You can use the same style sheet over and over.

 Multiple pages can use the same style sheet. This is perfect if you have one

site that will have many pages using the same style. You can then change the

style on one page, and the new style will be reflected through the entire site.

The external style is another standard text file that can also be edited with

a plain-text editor. It simply contains the style rules. It does not require

the <style></style> pair. Here’s the externStyle.css page called by

externStyle.html:

h1 {
 color: red;
 background-color: yellow;
}

p {
 color: white;
 background-color: black;
}

Managing the Appearance of Your Page
Of course, Web pages do much more than change color. The main ways you

can modify a page are by changing the appearance of text, adding borders

and background images, and changing the overall layout.

417997-bc02.indd BC12417997-bc02.indd BC12 11/3/09 9:50 AM11/3/09 9:50 AM

BC13 Bonus Chapter 2: Formatting with CSS

Understanding hex colors
For basic colors (like red and yellow) the color names are perfectly fine,

but sometimes you need something with a little more sophistication. Color

names are a bit confusing, and there are only 16 color names guaranteed to

be understood by CSS. It’s also a bit difficult to adjust colors. For example,

ask yourself, What color has just a little more green than aqua?

CSS has a more specific way of indicating colors. It’s a little geeky, but very

powerful. Each dot on a computer monitor is actually three different tiny

color emitters: red, green, and blue. The computer can adjust the amount of

color that comes out of each of these emitters. If you want to see a red dot,

the red emitter is turned to full strength, and the green and blue emitters are

turned completely off. You can combine the emitters to get various colors, so

red and green makes blue.

 You might be confused by the notion that red and green makes blue, because

in elementary school art class, they taught you a totally different way of

mixing colors. Both are actually correct. In elementary school, you start with

white paper and use pigments to subtract color values. Paper art normally

works in a subtractive color model (as does your computer printer). The moni-

tor starts with blackness and adds various amounts of colored light, so it

evokes an additive color model. While the approach is different, the result is

the same.

If you want to specify a particular color in the computer world, you can spec-

ify how much red, green, and blue are used to make the color. Then it would

make sense for red to be the color 100, 0, 0. This would mean “turn on all the

red, and turn off green and blue.”

However, computers don’t work as naturally with percentages as we do.

Computer organization works in a different way, so color values actually

range from 0 to 255. (Ack.) To make it even worse, technical people often

convert these numbers to base 16 (hexadecimal notation), which brings in all

kinds of crazy numbers and even letters. Each value takes a two-digit value

that ranges from 00 (completely off) to FF (full brightness.) This funky system

is called hexadecimal notation (often abbreviated hex).

Don’t panic. It’s not that hard. Look at the colorTester program shown in

Figure BC2-5 to see an illustration.

The colorTester program uses some JavaScript skills you will learn soon!

Feel free to look at the source code to see how it works. For now, use the pro-

gram to see how these hex values can be used to specify colors.

417997-bc02.indd BC13417997-bc02.indd BC13 11/3/09 9:50 AM11/3/09 9:50 AM

BC14 JavaScript & AJAX For Dummies

Figure BC2-5:
 Play with
this page

to see how
hex colors

work.

First, note how the page is arranged:

 ✓ The page background is black. The page background will change colors

to reflect the current color settings.

 ✓ There are three columns of buttons. There are columns for red, green,

and blue.

 ✓ Gray buttons directly set hex values. The gray buttons can be used to

set a color value to a specific setting. Brighter values (FF) are on the top

of the stack, with lower values (00) on the bottom.

 ✓ The current color is modified on the fly. As you click on the various

buttons, the background color changes to reflect the current color, and

the heading changes to indicate the hex value of the current color.

 ✓ Gray buttons show preset values. Web developers often begin with

preset values in the ranges shown on the buttons (00, 33, 66, 99, CC, FF).

417997-bc02.indd BC14417997-bc02.indd BC14 11/3/09 9:50 AM11/3/09 9:50 AM

BC15 Bonus Chapter 2: Formatting with CSS

These values provide a reasonable range of colors while still being easy

to modify.

 ✓ Black buttons allow finer tuning. Of course, you can use values besides

the presets. If you want to add a little more red, for example, you can

use the +10 button in the red column to do this.

You can use hex color values anywhere you use color names. For example, if

you want to specify that a level-1 heading is red text on a yellow background,

you can use these hex codes:

h1 {
 color: #FF0000;
 background-color: #FFFF00;
}

Use the pound sign (#) to indicate you are using hex values rather than color

names. Hex values have a number of advantages over named colors:

 ✓ There are more of them. Only 16 named colors are officially recognized by

CSS (although most browsers can read many more). With the hex system,

you can actually represent more than 16 million different colors. Even if

you stick with the 00336699CCFF system, you have 216 colors to play with.

 ✓ Hex colors are easier to adjust. You can directly tweak the hex values

to get variations of the basic colors. If you want “a little more blue,” this

is much easier accomplished with hex colors than named colors.

 ✓ Hex colors are more universal. Most computer graphic programs use

the hex notation, so you can sample a color in your graphics editor and

match it in your Web page.

 ✓ Color scheme generators can help you match colors. If (like me) you

have a design disability, you can use a tool such as the color-scheme

generator at http://colorschemedesigner.com. This marvelous

tool lets you play around with various color schemes in real time, and

then generates hex codes you can use in your own page.

Modifying text
Web pages are primarily about text, and CSS has many great features for

manipulating text. Figure BC2-6 shows a page with a number of text effects:

417997-bc02.indd BC15417997-bc02.indd BC15 11/3/09 9:50 AM11/3/09 9:50 AM

BC16 JavaScript & AJAX For Dummies

Figure BC2-6:
Using

various style
effects to

modify text.

Text can be manipulated in a number of interesting ways. Look over the HTML

source of the textManipulation.html page to see the general overview:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>textManipulation.html</title>
 <link rel = «stylesheet»
 type = «text/css»
 href = «textManipulation.css» />

 </head>

 <body>

 <p>
 This paragraph uses the default style.
 </p>

 <p class = «italic»>
 This paragraph is italicized.

417997-bc02.indd BC16417997-bc02.indd BC16 11/3/09 9:50 AM11/3/09 9:50 AM

BC17 Bonus Chapter 2: Formatting with CSS

 </p>

 <p class = «bold»>
 This paragraph is bold-faced.
 </p>

 <p class = «underline»>
 This paragraph is underlined.
 </p>

 <p class = «strikeThrough»>
 This paragraph has strike-through text.
 </p>

 <p class = «center»>
 This paragraph is centered.
 </p>

 <p class = «right»>
 This paragraph is right-justified.
 </p>

 <p class = «sans»>
 This paragraph uses a sans-serif font
 </p>

 <p class = «big»>
 This paragraph uses a larger font
 </p>

 <p class = «center underline»>
 This paragraph is centered and underlined
 </p>
 </body>
</html>

There’s not too much going on here, because most of the work happens in

the CSS. Here are the things to notice:

 ✓ The page is mainly a series of paragraphs. There’s no real styling in the

HTML itself.

 ✓ Styles are indicated by class identifiers. Each paragraph has a class

identifier to specify how it should be styled. You’ll find a corresponding

class definition in the style sheet.

 ✓ The page calls an external style sheet. The styles are handled by

textManipulation.css.

 ✓ One paragraph uses more than one style. The last paragraph actually

combines two classes. It calls both the center and underline classes.

417997-bc02.indd BC17417997-bc02.indd BC17 11/3/09 9:50 AM11/3/09 9:50 AM

BC18 JavaScript & AJAX For Dummies

The style sheet is where all the fun stuff happens. It uses a number of CSS

rules to clarify how the various paragraphs should be styled. Look at the

overall code; then I break it down to show the details.

.italic {
 font-style: italic;
}

.bold {
 font-weight: bold;
}

.underline {
 text-decoration: underline;
}

.strikeThrough {
 text-decoration: line-through;
}

.center {
 text-align: center;
}

.right {
 text-align: right;
}

.sans {
 font-family: sans-serif;
}

.big {
 font-size: 200%;
}

You can see that I’ve defined a number of classes here. The class names indi-

cate the various effects, and each class contains a single rule to generate that

effect.

Here’s how all the various rules work:

 ✓ Setting the font style. You can set the overall font style with the font-
style attribute. Valid options for this rule are italic, normal, and

oblique (tipped backward).

 ✓ Changing text weight. You can specify how much weight (boldness) to

apply to text with the font-weight attribute. The most common values

are bold and normal.

417997-bc02.indd BC18417997-bc02.indd BC18 11/3/09 9:50 AM11/3/09 9:50 AM

BC19 Bonus Chapter 2: Formatting with CSS

 ✓ Managing text decoration. The text-decoration attribute can

modify a number of effects, but it is normally used to add a line to

text. The most commonly used values are underline, overline,

line-through, and none.

 ✓ Handling text alignment. Text alignment is normally controlled through

the (aptly named) text-align attribute. Most common values are

center, left, right, and justify. Note that this attribute is only

used to align text inside an element. If you want to center an entire ele-

ment (say a paragraph or table), look ahead to the margin attributes

described later in this chapter.

 ✓ Managing fonts. You can specify a font to display with the font-
family attribute. This can be used to specify any font on your system,

but users will not be able to see these fonts if they aren’t installed. See

the sidebar “Font frustration” later in this chapter for an overview of

font names and how to work with them.

 ✓ Changing font size. The size of your text can be specified with the

font-size attribute. This attribute can be measured in many ways, but

the safest approach for Web development is to specify percentage of the

base font. To make text twice as large as normal, set its font-size to

200%. (You can use traditional measures such as points, but they have

less meaning and reliability in the Web setting than they do in standard

print application.)

Font frustration
Fonts cause a lot of headaches for Web devel-
opers. Computer fonts were designed with word
processing in mind. When you install a font, it is
registered to your local operating system, and
you can use it in the programs installed on your
computer. When you print a word processing
document, the font information is transferred
to the image on the paper, but the font itself
stays on the computer. Web development is a
bit different, because the document is trans-
mitted across the Web to a distant computer.
That computer might or might not have the
same fonts installed on it as yours. (Probably it
doesn’t.) While there are some good solutions
proposed in the next version of CSS (CSS3) they
aren’t workable in current browsers. A few font
names, however, are guaranteed to work (at

some level) in any browser: serif, sans-serif,
cursive, fantasy, and monospace.

When you specify a font family, you can provide
a list of fonts. The browser will try each font in
the list until it finds something it can use. For
example, if you really like the Tahoma font in
Windows and want the browser to use some-
thing like it, you can use the following code:

font-family: “Tahoma”,
“Geneva”, “sans-serif”;

This code tries to find Tahoma (which is pres-
ent on most Windows installations); if it can’t, it
looks for Geneva (similar to Tahoma but found
on Macs). If neither of these searches works, it
applies whatever sans-serif font it knows about.

417997-bc02.indd BC19417997-bc02.indd BC19 11/3/09 9:50 AM11/3/09 9:50 AM

BC20 JavaScript & AJAX For Dummies

Joining the Border Patrol
It’s possible to draw a border around an element. This is a potentially useful

design element, but it can also be very helpful when debugging a page layout.

There are three main border properties:

 ✓ border-width: Specifies the width of the border. This can use the stan-

dard CSS measurement schemes, but borders are usually measured in

pixels (px).

 ✓ border-color: Determines the color of the border. Border color is

specified with a color name or hex value.

 ✓ border-style: Specifies a pattern for the border.

Figure BC2-7 shows the possible border styles.

Figure BC2-7:
 Here are all

the border
styles.

Generally, the various border attributes are combined into the single border

property, which allows you to specify width, style, and color all in one. For

417997-bc02.indd BC20417997-bc02.indd BC20 11/3/09 9:50 AM11/3/09 9:50 AM

BC21 Bonus Chapter 2: Formatting with CSS

example, to specify a 5-pixel blue double border on your paragraphs, you

could use the following code:

p {
 border: 5px double blue;
}

One more handy trick is to isolate the various parts of the border to get lines.

For example, you can specify border-top to draw a line above an element

and border-right to draw to the right of the element. Each of these mini-

borders can be given the same list of value as the standard border.

Adding background images
You can add a background image to any element. The background attribute

has a slightly different format than some of the other elements you’ve seen

so far. Figure BC2-8 illustrates a page with a background image.

Figure BC2-8:
The page

has a back-
ground

image, and
so does the

headline.

417997-bc02.indd BC21417997-bc02.indd BC21 11/3/09 9:50 AM11/3/09 9:50 AM

BC22 JavaScript & AJAX For Dummies

Background images are added through CSS:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=»EN» dir=»ltr» xmlns=»http://www.w3.org/1999/

xhtml»>
 <head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <title>backgroundImage.html</title>
 <style type = “text/css”>
 body {
 background-image: url(“ropeBG.jpg”);
 }
 h1 {
 background-image: url(“ropeBGLight.jpg”);
 }
 p {
 background-color: white;
 }
 </style>
 </head>

 <body>
 <h1>Using Background Images</h1>

 <p>
 The heading uses a lighter version of the

background,
 and the paragraph uses a solid color background.
 The heading uses a lighter version of the

background,
 and the paragraph uses a solid color background.
 The heading uses a lighter version of the

background,
 and the paragraph uses a solid color background.
 </p>
 </body>
</html>

The key to adding background images is the background-image attribute.

Here’s how you use it:

 1. Identify the image you wish to use.

 Choose a background image carefully. Make sure the image supports the

ideas you’re trying to communicate and doesn’t distract from your mes-

sage. Any of the standard Web formats (PNG, GIF, or JPG) is fine. You

might want to adjust your image in an editor (IrfanView and Gimp are

excellent free options) to ensure it’s the right size and resolution.

417997-bc02.indd BC22417997-bc02.indd BC22 11/3/09 9:50 AM11/3/09 9:50 AM

BC23 Bonus Chapter 2: Formatting with CSS

 2. Place the image in the same directory as your page.

 Although this step isn’t absolutely necessary, it’s much easier to manage

images if they are physically close to your page. That way when you move

the page to a server, you can easily move the associated images as well.

 3. Build your page as you normally would.

 Create the XHTML code as you normally do.

 4. Add a background image to the body CSS.

 This will apply an image to the entire page. Of course, you can also

apply images to any other element you want.

 5. Specify the URL of your image.

 The value of the background image has a unique syntax. You must specify

that you’re invoking a URL, so if the image is background.png, the value

of the background-image attribute will be url(“background.png”).

 6. Consider modifying the background.

 You can change the background image by using a number of other CSS

attributes: background-repeat allows you to control how the back-

ground repeats, and background-position lets you manipulate the

position of the background.

 7. Test your page.

 Make sure your background image is not too distracting.

Background images can be problematic. Take a look at Figure BC2-9 for an

example of this phenomenon.

Inappropriate background images are one of the most common beginner

mistakes. Consider the number of Web pages you’ve seen that have unread-

able text.

Most interesting photos have a lot of contrast. This is great for a picture

that’s meant to grab the user’s attention, but it’s a problem when the image is

supposed to be in the background. High contrast grabs the user’s attention,

which is a problem when the user is trying to read text. There are a couple

of standard solutions to this problem. You can either provide lower-contrast

versions of your background images, or you can use plain colors as the back-

ground of elements that feature text.

If you look at Figure BC2-9 you’ll see that I use both these tricks. The entire

page has the rope background. (Thanks to Julian Burgess for the great

image.) Note, however, that the title has a lighter version of the image, and

the paragraphs use a solid-color background.

417997-bc02.indd BC23417997-bc02.indd BC23 11/3/09 9:50 AM11/3/09 9:50 AM

BC24 JavaScript & AJAX For Dummies

Figure BC2-9:
Make sure

you can still
read the

foreground!

You can create a lower-contrast version of an image using a tool such as

IrfanView. (Use the adjust colors to make an extremely dark or extremely

light version of your image.) Use a darker background with lighter text, or a

lighter background with darker text.

Using Float Positioning
Page layout has long been one of the biggest weaknesses of HTML. Table-

based hacks used to be the best way to get a page to act correctly, but now

CSS provides a number of useful tools for managing the position of elements.

Floating position is extremely flexible but a bit challenging to understand. Once

you get the idea, you can use floating positions to set up a page that works

very well on a variety of browsers. As an example, think of a standard HTML or

XHTML form. Figure BC2-10 shows a typical form with no CSS applied.

Figure
BC2-10:

This page
has no CSS

at all.

417997-bc02.indd BC24417997-bc02.indd BC24 11/3/09 9:50 AM11/3/09 9:50 AM

BC25 Bonus Chapter 2: Formatting with CSS

The form has all the necessary features, but it is ugly. Take a look at the

HTML code to see how it’s formatted:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=»EN» dir=»ltr» xmlns=»http://www.w3.org/1999/

xhtml»>
 <head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <title>formNoStyle.html</title>
 </head>

 <body>
 <form action = “”>
 <fieldset>
 <label>Name</label>
 <input type = “text”
 id = “txtName” />
 <label>Address</label>
 <input type = “text”
 id = “txtAddress” />
 <label>Phone</label>
 <input type = “text”
 id = “txtPhone” />
 <button type = “button”>
 submit request
 </button>
 </fieldset>
 </form>
 </body>
</html>

There are a number of important features to note about this code:

 ✓ It supports a form. Form elements are critical in JavaScript coding, and

you’ll be building a lot of forms in your travels.

 ✓ The form has a fieldset container. Most of the form elements are

inline elements (that is, they must exist inside a block element). The

fieldset tag is a special block element designed to live in a form, so

it’s a perfect container for form elements.

 ✓ The form has a number of labels and inputs. Most forms have this gen-

eral structure: labels to indicate what the user is to enter and input ele-

ments to accept the user input. Each row is typically a label-and-input pair.

 ✓ The <label> tag describes labels. This is a relatively new development

in HTML. The <label> tag doesn’t have any formatting associated with

it, so it was not used traditionally. With CSS, you can provide whatever

formatting you want.

 ✓ The last element is a button. Most forms include one or more buttons.

The real action happens when the user clicks a button. Because the

417997-bc02.indd BC25417997-bc02.indd BC25 11/3/09 9:50 AM11/3/09 9:50 AM

BC26 JavaScript & AJAX For Dummies

button will have different formatting than the input elements, I use the

<button> tag to describe it.

 ✓ No formatting is described in the HTML. The HTML code simply

describes the intention of the various elements, not their formatting. CSS

will handle that.

 ✓ The HTML is self-explanatory. You can tell what everything is just by

looking at the code. There’s no code here that isn’t directly related to

the purpose of the form.

 ✓ It’s kind of like a table. The general structure of the form looks a bit like

a table, but not quite. The goal of the CSS is to take this very clean data

structure and make it look visually like a table without having to muddy

the HTML code with actual table tags.

When you look at Figure BC2-10, it’s clear that the browser is not displaying

the form in a way that’s acceptable. Typically we want forms to look more like

a table. Of course, you can embed an HTML table into the code, but that’s a lot

more work (and complexity) than you need. CSS provides a simpler solution.

Understanding the display types
To understand how this works, you need to understand a little about how

Web browsers manage page layout.

It takes very little CSS code to turn the form into a basic table-style format,

but the code can be mysterious. The secret has to do with the way HTML

lays out pages. Essentially, a Web browser can lay out Web elements in three

different ways:

 ✓ Inline: Place the element exactly where you would place the next char-

acter of text.

 ✓ Block: The element is basically independent and gets its own line.

Block elements (such as H1 tags and paragraphs) typically have line

breaks before and after themselves.

 ✓ Alternative: Some special CSS attributes remove elements from the

normal layout scheme (at least to some extent) and apply different

placement rules to them. The float attribute described in this section

is one example.

All of the HTML tags have their own default display mechanism (inline or

block). You can alter the way a tag is displayed by changing its display

attribute. You can also add an alternative placement scheme by changing

other CSS attributes. That’s how you can make a form look and act like a

table without needing table tags.

417997-bc02.indd BC26417997-bc02.indd BC26 11/3/09 9:50 AM11/3/09 9:50 AM

BC27 Bonus Chapter 2: Formatting with CSS

Having a block party
The first step is to define some of the elements as block-level using the dis-
play attribute.

Take a look at Figure BC2-11 to see how this is done.

Figure
BC2-11:

The ele-
ments are

all stacked
up on top of
each other.

The HTML in formBlock.html is no different than the HTML in formNo-
Style.html. The only difference is the inclusion of an external style sheet:

formBlock.css.

The code for formBlock.css is pretty simple:

input {
 display: block;
}

button {
 display: block;
}

All it does is specify that buttons and input elements (the text boxes)

should be block-level elements. This forces the page to a stacked look, but

more importantly, it sets the stage for a nicer layout.

 Note that I changed the text manually (by pressing Control-+) on all the

figures in this chapter to make them easier to read in the book. The CSS

doesn’t change the size of the text, but of course you can use it to do that if

you want.

417997-bc02.indd BC27417997-bc02.indd BC27 11/3/09 9:50 AM11/3/09 9:50 AM

BC28 JavaScript & AJAX For Dummies

Floating to a two-column look
This is a starting place, but you really want the labels to be to the left of the

corresponding block. The float attribute can be used to create exactly this

effect, as you can see in Figure BC2-12.

Figure
BC2-12:

The labels
are floated,

giving a
two-column

effect.

The float attribute allows you to remove an element from the normal layout

rules and apply a special floating behavior. The float attribute describes

the relationship between an element and its neighbors. In this case, I tell each

label to float to the left. (You can also float to the right, but this is rarely done

in practice.) This causes the label to be immediately to the left of the corre-

sponding input element. Adding a width to the floated label makes the input

elements line up nicely (looking and acting like a table with no additional

HTML code).

Here’s the code for formTwoCol.css:

label {
 float: left;
 width: 30%;

417997-bc02.indd BC28417997-bc02.indd BC28 11/3/09 9:50 AM11/3/09 9:50 AM

BC29 Bonus Chapter 2: Formatting with CSS

}

input {
 display: block;
}

button {
 display: block;
}

Cleaning up the form
Of course, there’s a lot more you can do with the CSS to make things look

better. formFloat.html in Figure BC2-13 shows a nicely formatted form.

Figure
BC2-13:

Now the
form has
very nice

formatting.

A few more CSS attributes are used to tweak the form’s appearance:

 ✓ margin: The margin attribute describes what margin occurs outside

the boundary of an element. You can define all margins with the plain

417997-bc02.indd BC29417997-bc02.indd BC29 11/3/09 9:50 AM11/3/09 9:50 AM

BC30 JavaScript & AJAX For Dummies

margin attribute, or you can specify individual margins (margin-left

controls the left margin, for example). If you set the margin attribute to

auto, you will center the element horizontally. (There is no easy way to

do vertical centering in CSS.)

 ✓ padding: The padding attribute specifies the space between the con-

tent of an element and its boundary. Padding is used to fix text that is

crowded too close to a border.

 ✓ text-alignment: The text-alignment attribute is used to manipu-

late the content of an element (use the margin attribute to center the

element itself).

Take a look at the code for formFloat.css and then I explain how it works:

fieldset {
 width: 80%;
 margin: auto;
}

label {
 float: left;
 width: 30%;
 text-align: right;
 padding-right: 1em;
 margin-left: 15%;
}

input {
 display: block;
 width: 30%
}

button {
 display: block;
 margin: auto;
 margin-top: 1em;
}

This version of the CSS still works on exactly the same HTML as the previous

examples. It adds a few formatting attributes to clean up the page and get a

better-looking form. Here’s how to build this type of form layout:

 1. Begin with a two-column layout.

 Begin by building the simple two-column layout described in the previ-

ous section.

 2. Center the fieldset.

 The fieldset is a block-level element by default, which is what you

want. Block-level elements typically take up 100% of their container’s

width, so if you want to center a fieldset (or any other block-level ele-

ment,) you need to make it narrower and set the margin to auto.

417997-bc02.indd BC30417997-bc02.indd BC30 11/3/09 9:50 AM11/3/09 9:50 AM

BC31 Bonus Chapter 2: Formatting with CSS

 3. Right-justify the labels.

 I think it’s easier to enter data in a form if the label is very close to the

text box. For that reason, I usually right-justify the labels. Set the labels’

text-align attribute to right to achieve this effect.

 4. Pad the labels a little bit.

 When the text-align attribute is set to right, the labels seem to

crowd the input elements a bit. Add a little bit of padding-right to

the labels to give them a little breathing space. (1em is the width of the

widest character in the current font.)

 5. “Center” the labels and input elements.

 You can’t exactly center the label and input combination, because

they’re two different elements on the same line. However, you can use

percentages to get the same effect. If the label and input are both set at

30% width and the left margin of the label is 20%, your label and input

elements will be centered within the fieldset element. However, if you

right-justify the labels (as I tend to do), the form looks better if you drift

it a little more to the left. I actually set the margin-left of the label to

15% instead, because I think it looks better.

 6. Center the button.

 Although buttons can be created as HTML input elements, I tend to use

the <button> tag instead. Buttons usually have different styles than

input elements (because they don’t require labels) so making them dif-

ferent HTML elements makes life easier. To center the button, just set its

display attribute to block and the margin to auto. I find the button

needs a little more vertical space, so I add a little margin-top to make

it look a little better.

Of course, you can do much more to make your forms look better. You can

add colors, background images, and custom fonts if you wish. The important

idea here is to let CSS handle all the formatting so your pages can look good

with the cleanest possible HTML code. Separating the CSS from the HTML

will make your life a lot easier when you start writing JavaScript code to

manipulate the page. (That will be very soon, I promise!)

Using absolute positioning
CSS allows some other useful mechanisms for positioning elements. The abso-
lute positioning scheme is especially useful, as it allows you to have much more

precise control of the position of CSS elements. When you specify that an ele-

ment will use absolute positioning, you completely remove it from the normal

inline and/or block calculations, and you are expected to specify the exact

position of the object yourself.

417997-bc02.indd BC31417997-bc02.indd BC31 11/3/09 9:50 AM11/3/09 9:50 AM

BC32 JavaScript & AJAX For Dummies

 This makes the absolute positioning scheme very powerful, but often too

tedious for general layout. If you rely on absolute positioning to set up a page,

you generally have to use the technique for every element on the screen.

Absolute positioning techniques are best used for specialty objects that can

ignore the rest of the page layout scheme. I use it mainly for creating moving

objects that are animated with JavaScript (see Chapter 8 for complete instruc-

tions on how to achieve this effect).

Figure BC2-14 shows an example of absolute positioning.

Figure
BC2-14:
The bug
isn’t fol-

lowing the
normal lay-

out rules!

The bug shown in Figure BC2-14 is sitting on top of the paragraph. This effect

is possible with absolute positioning.

417997-bc02.indd BC32417997-bc02.indd BC32 11/3/09 9:50 AM11/3/09 9:50 AM

BC33 Bonus Chapter 2: Formatting with CSS

When you use absolute positioning, you manually specify the position of the

element. Here’s the HTML for the absolute.html demonstration:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>absolute.html</title>
 <link rel = «stylesheet»
 type = «text/css»
 href = «absolute.css» />
</head>

<body>
 <h1>Absolute Positioning Example</h1>
 <p>
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 </p>

 <p id = «bug»>
 <img src = «bug.gif»
 alt = «bug picture» />
 </p>

</body>
</html>

This page contains an ordinary paragraph and a second paragraph named

“bug.” The bug paragraph contains only an image of a bug. Note that images

are inline-level tags, and they must be embedded within a block-level tag to

make the page validate. That’s why the image is inside another element, and

it’s the paragraph element that will be manipulated.

417997-bc02.indd BC33417997-bc02.indd BC33 11/3/09 9:50 AM11/3/09 9:50 AM

BC34 JavaScript & AJAX For Dummies

If there were no CSS, the page would simply display the bug image as its own

separate paragraph after the ordinary (text-laden) paragraph. However, the

CSS file changes things:

#bug {
 position: absolute;
 left: 100px;
 top: 50px;
}

The CSS changes the behavior of the element named bug in a few important

ways:

 ✓ The position attribute is set to absolute. This means ordinary

layout mechanisms are overruled by specific position information.

 ✓ The left attribute is set to 100 pixels. After you’ve assigned absolute

positioning to an element, you’re committed to specifying its top and left

positions. Normally you set the absolutely positioned elements by using

pixels (px).

 ✓ The top attribute is set to 50 pixels. This will force the object’s upper

left corner to be (100, 50) pixels from the upper-left corner of the

document.

 ✓ The absolutely positioned element will obscure traditional elements.

Anything placed with absolute positioning will ignore previously posi-

tioned elements. This can be a problem in ordinary Web design, but in

animation, it can be a nice feature. (For example, you can make the bug

fly around the screen with JavaScript tricks.)

There is much more to CSS positioning than I can describe in this intro-

ductory chapter, but the basic tools you learn here can be used in most

JavaScript and AJAX applications to vastly improve the look and behavior of

your pages. If you want to investigate CSS positioning in more detail, please

check out one of my other books: HTML, XHTML, and CSS All-in-One Desktop
Reference For Dummies. I have hundreds of pages in that book dedicated to

explaining multi-column layouts, drop-down menus, and other CSS goodness.

417997-bc02.indd BC34417997-bc02.indd BC34 11/3/09 9:50 AM11/3/09 9:50 AM

