
he gameEngine module is powerful and fun to use. Even if you
haven’t read all the way through the book, you can use this module
to create some interesting and fun games.

GameEngine
DocumentationB

APPENDIX

Installing the Module
The easiest way to use gameEngine is to simply copy the gameEngine file
into your program’s working directory. You can then import gameEngine to
have access to all the features of the module. If you want to distribute a game
using gameEngine, just include gameEngine.py.

Transfer
Please check Appendix C for more information on
packaging and distributing your modules and games.

If you really like gameEngine, you can install it as a module, and then it
will be available to all your Python programs, just like pygame.

T

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-1

Here’s how you install gameEngine as a module:

1. Extract the files in gameEngine-1.1.zip to a temporary directory.

2. Open a command shell and move to the directory.

For example, use a terminal shell in Linux/Mac or a DOS shell in Windows.
Move to the temporary directory.

3. Install the program.

You’ll find a Python program in the directory called setup.py. Run that pro-
gram with the install directive, like this:

python setup.py install

This program will automatically copy gameEngine.py to an appropriate spot in
your Python system so it will be available to all your Python programs.

Transfer
The setup.py program and installation process are described
in Appendix C.

Appendix B: GameEngine DocumentationB-2

Using the Scene Class
The gameEngine Scene class is a simple but powerful tool that encapsulates the
IDEA/ALTER framework. You can make an instance of the Scene class right away,
or you can extend the Scene class to make a custom starting point for your games.

Once you’ve created a Scene, you can add sprites to its sprites attribute. You can
also modify the background object, and even make new sprite lists that will all
automatically be updated at the right time. You can add any sprites you wish to a
scene, regular sprites, instances of the SuperSprite class, gameEngine widgets,
or extensions of any of these things.

When you want the game to begin, call your scene instance’s start() method to
get things rolling. Of course you can stop a scene with the stop() method. One pro-
gram can have multiple scenes to handle various states, sub-games, instruction
screens, or whatever you want.

If you’ve created an extension of the Scene class, you can override one or both of
two event-handling functions. The doEvents() method passes a copy of the event
object from the main loop so you can do any traditional event-handling there. The
update() method runs every frame (just like pygame.sprite.Sprite’s
update() method) so you can use it to put any code you wish.

Table B-1 describes the Scene attributes, which can be modified externally.

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-2

Table B-1 Public Scene Attributes

Name Type Description

background Surface The background drawing surface
of the scene.

screen Surface The primary drawing surface of the
scene.

sprites List of sprite objects The primary sprite group. You can
create other sprite groups with the
Scene class’s makeSpriteGroup()
and addGroup() methods.

Table B-2 shows the publicly accessible methods of the Scene object.

Table B-2 Public Scene Methods

Name Parameters Description

__init__() <none> Initiator. If you’re writing an
extension of the Scene class,
be sure to call Scene.__
init__(self) at the
beginning of the method.

start() <none> Starts the __mainLoop()
method.

stop() <none> Ends the Scene object’s
main loop and sends control
back to the calling program.

makeSpriteGroup sprites: a list of sprites Returns a sprite group.
(sprites) to add to the new sprite

group.

addSpriteGroup group: a sprite group Adds the group to the
(group) created through the Scene Scene’s list of groups.

class’s makeSpriteGroup() Group is automatically
method or the pygame. cleared, updated, and
sprite.Group() redrawn inside main loop.

setCaption title: a string Sets the window caption to
(title) containing new caption the text specified by title.

Using the Scene Class B-3

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-3

The Scene methods shown in Table B-3 are meant to be overridden in subclasses of
Scene. Both are empty in the standard Scene class. They are used to add event or
collision functionality to extensions of the Scene class.

Table B-3 Scene Override Methods

Name Parameters Description

doEvents(event) event: the event object Override this method to
passed to the doEvents() write code that has access
method. to the event object and runs

every frame.

update() <none> Override this method to write
code that runs every frame.
Note that doEvents() is
called before update().

Appendix B: GameEngine DocumentationB-4

Using the Label Class
The gameEngine Label class is a lightweight but powerful GUI widget. Use a
label instance when you want to easily place text on the screen. All Label control
is done through its attributes (see Table B-4). All attributes have a default value,
so you don’t absolutely have to set any of them (but you should for best results).
You can change any Label attributes even after the label has been displayed.

Table B-4 Public Attributes of the Label Class

Name Type Description

font pygame.font.Font instance The font and size that will be
used in this label.

text string Text to display.

fgColor color tuple (R, G, B) Foreground color of text.

bgColor color tuple (R, G, B) Background color behind text.

center position tuple (x, y) Position of label center, used to
position entire label.

size size tuple (width, height) Used to set label’s size.

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-4

Using the Button Class B-5

Using the Button Class
The gameEngine Button class is an extension of the Label class that has the
added ability to detect mouse clicks. It has two Boolean attributes for detecting
mouse activity. active is True if the mouse’s left button is down over the button.
clicked is True if the mouse left button was pressed and released over the button.

The default background color is set to gray to differentiate it from the Label, but you
can change it to whatever you wish. Table B-5 lists the attributes you can modify.

Table B-5 Public Attributes of the Button Class

Name Type Description

font * pygame Font class The font that will be used in this label.

text * string Text to display.

fgColor * color tuple (R, G, B) Foreground color of text.

bgColor * color tuple (R, G, B) Background color behind text.

center * position tuple (x, y) Position of label center, used to posi-
tion entire label.

size * size tuple (width, height) Used to set label’s size.

* This attribute is inherited from the Label class.

The Button class has two Boolean attributes that are not intended to be changed
from the outside, as shown in Table B-6. Instead, these attributes report the current
status of the button.

Table B-6 Read-Only Attributes of the Button Class

Name Type Description

Active Boolean True if mouse button is down and mouse is over
button rect.

Clicked Boolean True if mouse was pressed and released over
button rect.

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-5

Appendix B: GameEngine DocumentationB-6

Using the Scroller Class
gameEngine includes a simple scroller that serves the purpose of a scroll bar in tra-
ditional GUI environments. The main purpose of the scroller is to act as a graphical
way to edit and view numerical input. The Scroller class is an extension of the
Button class, so it has all the characteristics of Button (including those inherited
from the Label class). Scroller also has its own attributes used to control the
scroller’s behavior (see Table B-7).

The scroller has a numeric value attribute that ranges from minValue to maxValue.
If the user clicks the mouse on the left half of the scroller, the value is reduced by
increment. If the user clicks on the right half, the value is increased by increment.

Table B-7 Public Attributes of the Scroller Class

Name Type Description

font * pygame.font.Font object The font that will be used in this
label.

text * string Text to display.

fgColor * color tuple (R, G, B) Foreground color of text.

bgColor * color tuple (R, G, B) Background color behind text.

center * position tuple (x, y) Position of label center. Used to
position entire label.

size * size tuple (width, height) Used to set label’s size.

Value integer or float The numeric value that the scroller
displays.

minValue integer or float Minimum value attainable by
scroller. Can be negative.

maxValue integer or float Maximum value attainable by
scroller.

Increment integer or float If mouse is currently clicked,
change this amount.

* This attribute is inherited from the Label class.

Information Kiosk
The scroller also inherits the active and clicked attributes
from the Button class, but these are not meant to be used

externally.

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-6

Introducing the SuperSprite Class B-7

Introducing the SuperSprite Class
The SuperSprite class is a powerful and flexible extension of the
pygame.sprite.Sprite class. SuperSprite incorporates many of the sprite
features described throughout this book. For example, you can set a SuperSprite
instance’s speed and direction, and the sprite will not only rotate automatically to face
that direction, but also travel in that direction at the indicated speed. If you prefer, you
can indicate the sprite’s dx and dy attributes, and it will move accordingly.

The SuperSprite class has five different boundary-checking behaviors built in. It
also has built-in functions to speed up, slow down, and rotate. If you want to use com-
plex physics, you can add a force vector to the sprite, and this new vector will be
added to the sprite’s current motion vector.

SuperSprite has a couple of features designed for collision detection. You can
check to see if the sprite collides with a particular sprite or an entire group of sprites.
If you need more specific information, you can easily determine the distance between
the sprite and any other point, or the angle between the sprite and a point.

A few utility methods round out the SuperSprite class’s bag of tricks. It has a
method that prints out the sprite’s current position and motion vector (useful for
debugging). It also has Boolean methods that can determine whether the sprite is cur-
rently being dragged or clicked. Finally, you can change the sprite’s image attribute
easily to make the sprite handle any bitmap.

The SuperSprite object (like the Scene object) can be instantiated as is, or it can
be extended to form your own class based on SuperSprite. If you extend
SuperSprite, you can add your own event-handling code. Although the
SuperSprite is a powerful beast, it’s pretty easy to use. The upcoming section
offers a rundown of its attributes.

Public attribute of the SuperSprite
The SuperSprite object has some attributes that could conceivably be referred to
from outside the method, but generally there isn’t a good reason to do so. If possible,
use methods to control the behavior of the SuperSprite object.

Step Into the Real World
The one place I tend to use SuperSprite attributes directly is in the dx and dy
attributes. If you do the same, remember also to call the updateVector()

method to make sure your changes are recorded. (Of course, if you use the built-in vector-
changing methods, you won’t need to do this.)

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-7

Public methods of the SuperSprite
The SuperSprite has a lot of methods (29 public and 4 private). To manage all
these choices, I’ll break them into categories.

Whenever you use the SuperSprite object, you’ll almost always use a few
extremely common methods — which are shown in Table B-8.

Table B-8 SuperSprite’s Essential Methods

Name Parameters Description

__init__(scene) scene: a gameEngine Initializes the SuperSprite
Scene object. The scene instance. If you are extending
to which this instance is the class, be sure to call
associated SuperSprite.__init__

(self) at beginning of method.

setImage(image) image: the filename of Used to set the image attribute.
an image (If the image has Creates an image master that
a front, the front of the can be automatically rotated as
image should face East.) needed.

setPosition position: (x, y) Moves the sprite immediately
(position) coordinates of the desired to the given coordinates.

position on-screen

setSpeed(speed) speed: The number of Sets the speed to any arbitrary
pixels that the sprite will value, including negative values.
travel per frame No speed limits imposed.

speedUp(amount) amount: the pixel-per-frame Changes the speed by amount
increase in speed. Can be pixels per frame. Respects
floating-point and/or speed limits (–3 to +10 by
negative value. (Negative default, or changed by
will slow the sprite down setSpeedLimits()).
and eventually cause the
sprite to move backward.)

setAngle(dir) dir: an angle in degrees Arbitrarily sets both the visual
(East is 0, increases rotation and the direction of
counterclockwise) travel to dir.

turnBy(amount) amount: an angle in degrees Changes both visual rotation
(negative values turn and direction of travel by
clockwise, positive values amount degrees.
turn counterclockwise)

Appendix B: GameEngine DocumentationB-8

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-8

Sometimes you need more specific controls for the sprite’s motion. The methods
shown in Table B-9 give you several techniques for altering or setting the sprite’s
motion vector.

Table B-9 SuperSprite’s Vector-Manipulation Methods

Name Parameters Description

setDX(dx) dx: new dx value Changes the dx attribute of the
sprite. Use this method instead of
directly assigning a dx value.

setDY(dx) dy: new dy value Changes the dy attribute of the
sprite. Use this method instead of
directly assigning a dy value.

addDX(ddx) ddx: change in dx Changes the dx attribute of the
sprite by the indicated amount.

addDY(ddx) ddy: change in dy Changes the dy attribute of the
sprite by the indicated amount.

setComponents dx, dy: new motion- Assigns dx and dy in one step.
((dx, dy)) vector components

updateVector() <none> If you must set dx or dy attributes
directly, this method makes the
change permanent when invoked.

moveBy(vector) vector: motion Moves the sprite according to the
vector in component vector without affecting rotation,
form (dx, dy) direction, or speed.

addForce(amt, amt: length of force Adds force vector to current speed
angle) vector and direction of travel. Used for

simulating skidding, gravity, and
angle: angle of so on.
force vector

forward(amt) amt: number of Moves in the current facing direction.
pixels to move Does not change speed.

rotateBy(amt) amt: degrees of Changes visual rotation without
rotation to add to affecting direction of travel.
visual rotation

Table B-10 lists several methods for adding handy features to the SuperSprite.

Introducing the SuperSprite Class B-9

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-9

Table B-10 SuperSprite’s Utility Methods

Name Parameters Description

setBoundAction action: one of the Sets the boundary
(action) following constants: action to the specified

value. If none is
WRAP around screen specified, then WRAP is

the default behavior.
BOUNCE off boundary

STOP at edge of screen

HIDE offstage and stop

CONTINUE indefinitely

setSpeedLimits max: maximum speed Sets the upper and
(max, min) (pixels per frame) lower speed limits.

Respected by the
min: minimum speed speedUp() method.
(pixels per frame)

mouseDown() <none> Returns True if mouse
button is currently pressed
over sprite. Can be used for
drag-and-drop.

clicked() <none> Returns True if mouse button
is pressed and released over
sprite. Makes sprite act like a
button.

collidesWith target: any sprite Returns True if colliding
(target) (ordinary or SuperSprite) with target.

collidesGroup group: a sprite group Returns True if a sprite
(group) in the group was hit in this

frame, or None if there are
no collisions between sprite
and group.

distanceTo(point) point: a specific set Determines the distance
of (x, y) coordinates from the center of the
on-screen sprite to point.

dirTo(point) point: a specific set Determines direction
of (x, y) coordinates from center of sprite to
on-screen point.

dataTrace() <none> Prints x, y, speed, dir, dx,
and dy. Used for debugging.

Appendix B: GameEngine DocumentationB-10

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-10

SuperSprite’s checkEvents() and checkBounds()
override methods
The SuperSprite has one method that is meant to be overridden in subclasses of
SuperSprite. Like the update() event in Scene, the checkEvents() method
is designed to be overridden. Use this method to add event handling to descendants of
SuperSprite. If you have a boundary-checking situation that isn’t covered by the
standard boundary actions, you can also override checkBounds() (see Table B-11).

Table B-11 SuperSprite’s Overwrite Methods

Name Parameters Description

checkEvents() <none> Overwrite this method to add code that
will run on each frame (usually event- or
collision-handling code).

checkBounds() <none> Overwrite this method if you need a
boundary-checking technique that isn’t
covered in the built-in techniques.

Sample Programs B-11

Sample Programs
The following programs illustrate the gameEngine’s features in more detail. (For a
complete description of these programs, please see Chapter 10.)

The simplest possible gameEngine game
The simpleGE.py program is the gameEngine equivalent to the traditional “Hello
World” test program:

“”” simpleGe.py
example of simplest possible
game engine program

“””

import pygame, gameEngine

game = gameEngine.Scene()
game.start()

This program uses a standard instance of the Scene class. The default instance has a
SuperSprite object built in (which you will usually replace with your own sprites).
Even with this extremely limited code, the program runs and the sprite moves around
on the screen.

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-11

Extending the SuperSprite class
The SuperSprite class is a powerful tool, but if you want to add event-handling
capability, you’ll need to extend it. The carGE.py program shows how this is done:

“”” carGE.py
extend SuperSprite to add keyboard input

“””

import pygame, gameEngine

class Car(gameEngine.SuperSprite):
def __init__(self, scene):

gameEngine.SuperSprite.__init__(self, scene)
self.setImage(“car.gif”)

def checkEvents(self):
keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT]:

self.turnBy(5)
if keys[pygame.K_RIGHT]:

self.turnBy(-5)
if keys[pygame.K_UP]:

self.speedUp(.2)
if keys[pygame.K_DOWN]:

self.speedUp(-.2)

def main():
game = gameEngine.Scene()
game.background.fill((0xCC, 0xCC, 0xCC))

car = Car(game)
game.sprites = [car]

game.start()

if __name__ == “__main__”:
main()

The Car class is simply an extension of the SuperSprite class with the
checkEvents() method overwritten. To add the custom class, create an instance
of the Car class with the scene instance as its argument, add the car to the scene’s
sprites list, and start up the scene.

Drag-and-drop sprites
You can also customize a sprite to get a version of drag-and-drop behavior, as shown
in dragDrop.py:

Appendix B: GameEngine DocumentationB-12

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-12

“”” dragDrop.py
illustrate click and mouseDown methods
with gameEngine

“””

import pygame, gameEngine

class Ball(gameEngine.SuperSprite):
def __init__(self, scene):

gameEngine.SuperSprite.__init__(self, scene)
self.setImage(“ball.gif”)

def checkEvents(self):
#drag and drop
if self.mouseDown():

self.setPosition(pygame.mouse.get_pos())

def main():
game = gameEngine.Scene()
ball = Ball(game)
game.sprites = [ball]
game.start()

if __name__ == “__main__”:
main()

The Ball class is an extension of SuperSprite. I use its mouseDown() method
to determine whether the mouse pointer is currently over the sprite. If it is, I set the
position to the mouse pointer’s current position.

Customizing the scene
Sometimes it’s more convenient to customize the scene, particularly when you’re
working with ordinary sprites or the GUI components. The guiDemoGE.py
program illustrates all the GUI elements. I put them together using an extension
of the Scene class.

“”” guiDemoGE.py
demonstrates the GUI objects in
gameEngine

“””

import pygame, gameEngine

class Game(gameEngine.Scene):
def __init__(self):

gameEngine.Scene.__init__(self)

self.addLabels()
self.addButton()

Sample Programs B-13

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-13

self.addScroller()
self.addMultiLabel()

self.sprites = [self.lblTitle, self.label,
self.lblButton, self.button,
self.lblScroller, self.scroller,
self.multi]

def addLabels(self):
self.lblTitle = gameEngine.Label()
self.lblTitle.text = “GameEngine GUI Demo”
self.lblTitle.center = (320, 40)
self.lblTitle.size = (300, 30)

self.label = gameEngine.Label()
self.label.font = pygame.font.Font 9

(“goodfoot.ttf”, 40)
self.label.text = “Label”
self.label.fgColor = (0xCC, 0x00, 0x00)
self.label.bgColor = (0xCC, 0xCC, 0x00)
self.label.center = (320, 100)
self.label.size = (100, 50)

def addButton(self):
self.lblButton = gameEngine.Label()
self.lblButton.center = (200, 180)
self.lblButton.text = “Button”

self.button = gameEngine.Button()
self.button.center = (450, 180)
self.button.text = “don’t click me”

def addScroller(self):
self.lblScroller = gameEngine.Label()
self.lblScroller.text = “scroller”
self.lblScroller.center = (200, 250)

self.scroller = gameEngine.Scroller()
self.scroller.center = (450, 250)
self.scroller.minValue= 0
self.scroller.maxValue = 250
self.scroller.value = 200
self.scroller.increment = 5

def addMultiLabel(self):
self.multi = gameEngine.MultiLabel()
self.multi.textLines = [

“This is a multiline text box.”,

Appendix B: GameEngine DocumentationB-14

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-14

“It’s useful when you want to”,
“put larger amounts of text”,
“on the screen. Of course, you”,
“can change the colors and font.”
]

self.multi.size = (400, 120)
self.multi.center = (320, 400)

def update(self):
if self.button.clicked:

self.lblButton.text = “Ouch!”

self.lblScroller.center = (self.scroller.value, 9
250)

def main():
game = Game()
game.start()

if __name__ == “__main__”:
main()

Using scrollbars
The rgbScroller.py program shows an RGB-color-choosing application that uses
the scroller component.

“”” rgbScroller.py
demonstrates use of scrollers
to make a color picker

“””

import pygame, gameEngine

class ColorScr(gameEngine.Scroller):
def __init__(self):

gameEngine.Scroller.__init__(self)
self.minValue = 0
self.maxValue = 255
self.value = 255
self.increment = 5
self.format = “<< %d >>”

class Game(gameEngine.Scene):
def __init__(self):

gameEngine.Scene.__init__(self)

#make scrollers
self.scrRed = ColorScr()

Sample Programs B-15

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-15

self.scrRed.center = (320, 200)

self.scrGreen = ColorScr()
self.scrGreen.center = (320, 240)

self.scrBlue = ColorScr()
self.scrBlue.center = (320, 280)

self.sprites = [self.scrRed, self.scrGreen, 9
self.scrBlue]

self.setCaption(“RGB Scrollers”)

def update(self):
red = self.scrRed.value
green = self.scrGreen.value
blue = self.scrBlue.value
self.background.fill((red, green, blue))

#blit the background
self.screen.blit(self.background, (0, 0))

def main():
game = Game()
game.start()

if __name__ == “__main__”:
main()

This program uses three instances of the Scroller class. The GUI objects don’t
have any event handling built-in, so I extend the Scene class and use its update()
method to handle the event-handling duties.

Creating a full game
A complete game will usually include several custom Scene objects. You might have
one scene to handle the instructions, another for the game itself, and a third for
reporting the player’s progress. The Scene class is easy to extend, and your game can
have as many as you need. Simply write your main loop code to control which scenes
are available when.

The betterAsteroids.py game illustrates all these features. It’s still not quite a
complete game (sound effects and a more effective control system are obvious needs),
but it does illustrate how to create a multi-state game. Take careful note of the special
carrier object used to pass information between scenes. Most of the data is encap-
sulated inside individual scenes, but two pieces of information should be shared
among scenes: the player’s score and his/her intention to keep going. I placed both
variables as attributes in a small object that preserves its value while the various
scenes are created and destroyed.

Appendix B: GameEngine DocumentationB-16

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-16

“”” betterAsteroids.py
Show more features of gameEngine
demonstrates multiple states, multiple
sprite groups, carrier object

“””

import pygame, gameEngine, random

class Ship(gameEngine.SuperSprite):
“”” player avatar.

standard space controls
arrows to turn, accel, space
to fire

“””
def __init__(self, scene):

gameEngine.SuperSprite.__init__(self, scene)
self.setImage(“ship.gif”)
self.setSpeed(0)
self.setAngle(0)

def checkEvents(self):
keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT]:

self.rotateBy(5)
if keys[pygame.K_RIGHT]:

self.rotateBy(-5)
if keys[pygame.K_UP]:

self.addForce(.2, self.rotation)
if keys[pygame.K_SPACE]:

self.scene.bullet.fire()

class Bullet(gameEngine.SuperSprite):
“”” bullet fired from spacecraft
“””

def __init__(self, scene):
gameEngine.SuperSprite.__init__(self, scene)
self.setImage(“bullet.gif”)
self.imageMaster = pygame.transform.scale 9

(self.imageMaster, (5, 5))
self.setBoundAction(self.HIDE)
self.reset()

def fire(self):
self.setPosition((self.scene.ship.x, 9

self.scene.ship.y))
self.setSpeed(12)
self.setAngle(self.scene.ship.rotation)

def reset(self):

Sample Programs B-17

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-17

self.setPosition ((-100, -100))
self.setSpeed(0)

class Rock(gameEngine.SuperSprite):
“”” asteroid. Rotates, wraps, and generally

gets in the way
“””
def __init__(self, scene):

gameEngine.SuperSprite.__init__(self, scene)
self.setImage(“rock.gif”)
self.reset()

def checkEvents(self):
self.rotateBy(self.rotSpeed)

def reset(self):
“”” change attributes randomly “””

#set random position
x = random.randint(0, self.screen.get_width())
y = random.randint(0, self.screen.get_height())
self.setPosition((x, y))

#set random size
scale = random.randint(10, 40)
self.setImage(“rock.gif”)
self.imageMaster = \

pygame.transform.scale(self.imageMaster, 9
(scale, scale))

self.setSpeed(random.randint(0, 6))
self.setAngle(random.randint(0, 360))
self.rotSpeed = random.randint(-5, 5)

class Game(gameEngine.Scene):
“”” primary gameplay state

manages player, bullet, rocks
returns score in carrier object

“””

def __init__(self, carrier):
gameEngine.Scene.__init__(self)
self.carrier = carrier

self.ship = Ship(self)
self.bullet = Bullet(self)
self.numRocks = 10
self.points = 2000

self.lblPoints = gameEngine.Label()

Appendix B: GameEngine DocumentationB-18

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-18

self.lblPoints.center = (100, 30)
self.lblPoints.text = “%d” % self.points
self.lblPoints.fgColor = (0xFF, 0xFF, 0xFF)
self.lblPoints.bgColor = (0, 0, 0)
self.rocks = []
for i in range(self.numRocks):

self.rocks.append(Rock(self))

self.rockGroup = self.makeSpriteGroup(self.rocks)
self.addGroup(self.rockGroup)
self.sprites = [self.lblPoints, self.bullet, 9

self.ship]
self.setCaption(“asteroids”)

def update(self):
rockHitShip = self.ship.collidesGroup(self.rocks)
if rockHitShip:

rockHitShip.reset()

rockHitBullet = self.bullet.collidesGroup 9
(self.rocks)

if rockHitBullet:
rockHitBullet.kill()
if len(self.rockGroup) <= 0:

self.stop()
self.carrier.score = self.points

self.bullet.reset()

self.points -= 1
self.lblPoints.text = “%d” % self.points
if self.points <= 0:

self.stop()
score = 0

class Intro(gameEngine.Scene):
“”” introduction. Simply sets the

stage
“””
def __init__(self):

gameEngine.Scene.__init__(self)
instructions = gameEngine.MultiLabel()
instructions.textLines = [

“You are caught in an asteroid”,
“field. Use your blasters to “,
“destroy the asteroids.”,
“”,
“Blow them up quickly for more “
“points.”]

instructions.size = (400, 300)

Sample Programs B-19

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-19

instructions.fgColor = (0xFF, 0xFF, 0xFF)
instructions.bgColor = (0, 0, 0)
instructions.center = (320, 200)

self.button = gameEngine.Button()
self.button.center = (320, 400)
self.button.text = “Play”

self.sprites = [instructions, self.button]
self.setCaption(“Asteroids”)

def update(self):
if self.button.clicked:

self.stop()

class Report(gameEngine.Scene):
“”” reports the player’s score,

determines if player wants
to try again
score and data passed in
carrier object

“””

def __init__(self, carrier):
gameEngine.Scene.__init__(self)

self.carrier = carrier

lblPoints = gameEngine.Label()
lblPoints.center = (320, 240)
lblPoints.fgColor = (0xFF, 0xFF, 0xFF)
lblPoints.bgColor = (0, 0, 0)
lblPoints.size = (300, 50)
lblPoints.text = “Score: %d points” % carrier.score

self.btnAgain = gameEngine.Button()
self.btnAgain.text = “play again”
self.btnAgain.center = (100, 400)

self.btnQuit = gameEngine.Button()
self.btnQuit.text = “quit”
self.btnQuit.center = (540, 400)

self.sprites = [lblPoints, self.btnAgain, 9
self.btnQuit]

def update(self):
if self.btnAgain.clicked:

self.carrier.goAgain = True

Appendix B: GameEngine DocumentationB-20

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-20

self.stop()
if self.btnQuit.clicked:

self.carrier.goAgain = False
self.stop()

class Carrier(object):
“”” an object meant to hold multi-state

data:
score: current number of points
goAgain: boolean continue

“””

def __init__(self, score, goAgain):
self.score = score
self.goAgain = goAgain

def main():
intro = Intro()
intro.start()

carrier = Carrier(20000, True)

while carrier.goAgain:
game = Game(carrier)
game.start()

report = Report(carrier)
report.start()

if __name__ == “__main__”:
main()

Sample Programs B-21

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-21

068229_bc_appb.qxp 12/21/06 11:45 AM Page B-22

