
ow that you know how to build some great libraries and programs,
it’s natural to share them with others. It’s pretty easy to just send
someone your Python code, but there are a couple of problems with

that approach:

The other person has to have Python installed. It’s not that hard
to install Python, but it might not be realistic to expect Grandma to
be able to install Python just so she can see the game you wrote.
Remember, to run the games, you’ll also need pygame, so that adds a
little complexity to the installation as well.

Your code could get messed up. A Python program is just a text file.
What if the user accidentally opens your masterwork in Notepad and
then randomly hits the keyboard? If the code gets typed over or some-
thing gets inserted, the code will no longer work correctly. Using code
in a form that’s easy to change (and break) is kind of risky.

You also have to consider additional files. Most games also incorpo-
rate graphics and sound effects, which come as separate files. All these
files need to be stored in the right place on the user’s machine in order
to work correctly. It would be great if you had a system to recreate your
own set of resources on the user’s machine, including the appropriate
directory structure.

Distributing
Modules and

Programs

C
APPENDIX

N

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-1

Modules have their own issues. If you’ve built a module like gameEngine, it
will be used only by Python programmers wanting to add gameEngine func-
tionality. You can count on these users having Python, but you have other issues:
How do you install a custom module so you can access it from any program,
like you do with pygame?

Introducing the distutils and py2exe modules
Python has a really nice built-in feature for handling these kinds of problems. There’s
a special package called distutils that contains some really handy features for
packaging up your programs so they can be run from another machine. There’s an
extension to distutils called py2exe that goes one step farther. It packs up a
Python program with all its dependencies and extra files, and packages those files in
a Windows executable file (an EXE file that can be run simply by clicking on its
icon). The user doesn’t have to have Python installed on his machine at all. All she
needs to do is unzip the package and run the executable file you created. A custom
version of Python is embedded into the program, and all the images and sound effects
are automatically incorporated. (Pretty handy, huh?)

There’s a couple of different ways you can package things up, depending on how the
code is supposed to behave. If you’re writing a module like gameEngine, you’re
packaging it up for programmers to use. You can assume they have Python installed,
and they just want to add your module to their system so they can use it to write their
own programs. If you’re writing a program for end users (who typically don’t have
Python installed and don’t care to do so), you’ll package things up a bit differently.
I explain both techniques here.

Appendix C: Distributing Modules and ProgramsC-2

Step Into the Real World
The techniques I show you in this chapter work well, but they are not very efficient.
Every executable you create with this system incorporates its own miniature Python

distribution. When you take a simple script and turn it into a Windows executable, the py2exe
system generates a large complex series of directories and files containing Python itself. All
these files need to be retained in your executable programs. I’ve included everything on the
Web site so you can see what gets created. Follow my instructions carefully, and you’ll see that
I create only a few standard Python scripts by hand. All the other stuff is being created by the
installation process.

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-2

Creating a Module C-3

Creating a Module
The gameEngine module described in this book is a very handy tool. So far, you
probably re-used it by copying it into whatever directory you are currently using.
There are a couple of problems with that approach.

It gets tedious to keep copying the program. It would be great if it were auto-
matically available to all your Python programs, like pygame is.

It can be risky to have several copies of the same library. If you have five
different games using gameEngine and you decide to make an improvement
to the module, you have to either copy that change to all five versions of
gameEngine.py or you have confusing inconsistencies, because one version
of gameEngine does things the other versions don’t do.

Installable Module Overview
Fortunately, it’s pretty easy to set up a module so it can be installed into a program-
mer’s Python system. If you want to make an installable module, follow these steps:

1. Prepare the module.

It’s best to put a copy of the module into its own directory. Otherwise you’ll likely
end up confused about what goes into the module and what doesn’t. Put any other
files that module needs in the same directory. (For example, gameEngine uses
freesansbold.ttf, so I put a copy of that font file in the directory.)

2. Write a setup.py script.

Create a simple Python program to manage your module. This program (tradition-
ally called setup.py) doesn’t really do much on the surface, but it accesses an
incredibly powerful Python routine. The setup.py program passes information
about your module to another function called distutils.core.setup().
Here’s my setup.py program for the gameEngine module:

setup.py
from distutils.core import setup
setup(name = “gameEngine”,

version = “1.0”,
py_modules=[“gameEngine”],
author=”Andy Harris”,
author_email=”aharris@cs.iupui.edu”,
url=”http://www.cs.iupui.edu/~aharris/pgl”
data_files=[(‘’,[“freesansbold.ttf”])]

)

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-3

Information Kiosk
Don’t panic if this code doesn’t make sense to you yet. I’ll
explain the setup.py script in the next section.

3. Save the setup.py script in the same directory as the program file.

Generally it should be called setup.py.

4. Run the setup.py script.

Go to the command line and run setup.py with its distribution option,
like this:

python setup.py sdist

5. Examine the results.

setup.py will create two new directories. The build directory is used during
the process of creating the module. Once your module is finished, you can
safely delete the build directory if you want. The other directory is called
dist. Inside that directory, you’ll find one ZIP file containing everything you
need. (If you’re using Linux or Mac OS, you will have a tarball rather than a
ZIP file.) Note that the program may complain about the lack of a MANIFEST
or README file. If you want to avoid this warning, you can simply incorporate
text files with these names. MANIFEST is normally a simple list of the files
included in a package, and README is a text file describing how to install and
use the program. Neither is absolutely necessary.

6. Make a Windows installer if you anticipate users will be running Windows.

If you know your audience uses Windows, you can run a variation that creates
an installer for you.

python setup.py bdist_wininst

Watch Your Step
You should use a Windows machine to create a Windows
installer, because the process uses several DLL files peculiar

to Windows.

When you use this option, look in the dist directory, and you’ll see an executable
(EXE) file. If the user runs this program, your module will automatically
install, and the user won’t ever need to manually run the setup.py file.

Figure C-1 shows the installation package running in Windows.

Appendix C: Distributing Modules and ProgramsC-4

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-4

Figure C-1: Using the bdist option gives you a professional installation option for your module.

7. Run the setup.py installation.

Mac and Linux users will not be able to use the Windows installer. Fortunately,
the same setup.py script you use to create the distribution can be used to
install the source distribution that works on every machine. The ZIP file created
by setup.py also includes a copy of the same setup.py program. To use it,
have your users unpack the compressed file and run this variant of setup.py:

python setup.py install

Creating a Module C-5

Step Into the Real World
The sdist qualifier is a command-line parameter. This tells setup.py that it should
create a source (or plain code in text files) distribution package. As you see in step

6, there are also binary distribution commands. When users want to install the module, they’ll
use a different command that installs the module. This is described in step 7.

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-5

This runs the same setup.py program but uses install mode, which automati-
cally installs the files in the appropriate place on the hard drive.

Writing the setup.py script
The setup.py script begins with an import statement. After ensuring you have
access to distutils.setup, simply call the setup() function with a set of
custom parameters. Of course, the parameters are really the key to a successful
setup.py program. The documentation for setup.py lists many parameters, but
those in Table C-1 are the most important.

Table C-1 Setup.py Parameters

Name Type Description

name string The name of the module or program as it
will be seen by Python.

version string represen- Used to keep track of different versions
tation of number of your program. It’s a very good idea to

incorporate version numbers so users can
tell when they should upgrade.

py_modules list of strings List containing modules in your distribution
(used primarily in modules).

author string Author’s name.

author_email string E-mail address.

url string Project’s main URL.

data_files list of Describes where any other files needed by
(dir: directory the distribution can be found and should be
string fileList: located in the final version. Use “.” to
list of filenames) indicate currentdirectory.
tuples

console string filename Name of Python program that should be run
in the console (used only in py2exe).

Appendix C: Distributing Modules and ProgramsC-6

Step Into the Real World
The Windows installer is a terrific option, but this particular tool is only used for
adding a custom module to a system that already includes Python. If you want to do

something similar with your finished games, you need to create an executable version of the
game, and add an installer to it. I show both these techniques in this appendix.

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-6

The setup.py program for installing a module is usually pretty simple. As an exam-
ple, here again is the setup.py program for the gameEngine module followed by
the steps to create it:

setup.py for gameEngine
from distutils.core import setup
setup(name = “gameEngine”,

version = “1.0”,
py_modules=[“gameEngine”],
author=”Andy Harris”,
author_email=”aharris@cs.iupui.edu”,
url=”http://www.cs.iupui.edu/~aharris/pgl”,
data_files=[(‘’,[“freesansbold.ttf”])]

)

1. Import the setup() function from distutils.

The setup function is part of the distutils module that comes with Python.
Import the utility so you can use it.

from distutils.core import setup

2. Run the setup() function to start the whole process.

Inform the setup() function of the name of your module.

setup(name = “gameEngine”,

3. Determine a version.

Although the version isn’t strictly necessary, it can be very handy, especially if
your module gets popular and people start using it.

version = “1.0”,

4. List the modules to include.

Since this is a very simple package with only one module, I simply include that
module’s name.

py_modules=[“gameEngine”],

5. Include contact information.

Add these values so that users can reach you (presumably with gifts, because
your module is so useful).

author=”Andy Harris”,
author_email=”aharris@cs.iupui.edu”,
url=”http://www.cs.iupui.edu/~aharris/pgl”,

6. List any other files that should be included.

I found that gameEngine works better if it avoids SysFont and directly loads
the default font instead. By adding this directive, I ensure that the default
pygame font will always be installed with gameEngine.

data_files=[(‘’,[“freesansbold.ttf”])]

Creating a Module C-7

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-7

You can use the data_files directive to add any other resources that your module
needs. These resources should generally be in the same directory as the current file.

Transfer
I explain the data_files directive more completely in the next
section on creating executables.

Appendix C: Distributing Modules and ProgramsC-8

Step Into the Real World
The data_files parameter looks really complicated, but it isn’t quite as messy as
it looks. Data_files contains a list of values. Each element of this list is a tuple,

representing a subdirectory and the files in that directory. The tuple has two values: the direc-
tory name (‘’ for the current directory) and another list containing names of files in the directory
that should be included. In my example, I want to include one file called freesansbold.ttf,
which is found in the same directory as the gameEngine.py program itself.

Creating a Windows Executable
The py2exe program extends the distutils module by allowing you to build a com-
plete Windows executable from your game. With this system in place, the user won’t
need to have Python or pygame installed. When they install the game, it simply runs.

Optimizing a game for py2exe
I have discovered a couple of things that cause problems when building executables
with py2exe. Your code will be much easier to turn into an executable program if
you follow these guidelines:

Put the game in its own directory. Put the game file and any other files it is
dependent upon in its own directory. If you need graphics, external fonts, or
sound effects, put them all in the primary directory or as simple a subdirectory
structure as you can get away with. Remove anything that’s not a critical part of
the game from the main directory structure.

Use external fonts. The biggest headaches seem to come from problems with
the Font class. I consistently have trouble with SysFonts working correctly
in compiled games. The easiest way to do this is to simply use TTF files (using
the standard Font class). If you want to use the standard pygame font, copy it
from the pygame distribution (look in Lib/site-packages/pygame for
freesansbold.ttf). If you’re using gameEngine, it will include a copy of
this font.

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-8

As an example, I’ve written a simple game called Bugs (bugs.py to be more spe-
cific) that illustrates a famous problem in computer science and statistics called the
“random walk.” I made it more interesting by creating a hundred bugs dashing around
the screen. Figure C-2 illustrates the Bugs program.

Figure C-2: This is one program that’s supposed to have a lot of bugs in it.

The code for the Bugs simulation is pretty simple, because gameEngine does most
of the work:

“”” bugs.py
random bug simulation
using gameEngine

“””

import random, pygame, gameEngine

class Bug(gameEngine.SuperSprite):
def __init__(self, scene):

gameEngine.SuperSprite.__init__(self, scene)
self.image = self.setImage(“bug.gif”)
self.setPosition((320, 240))
self.setSpeed(1)

def checkEvents(self):
“”” move semi-randomly “””
self.speedUp(random.randint(-1, 1))

Creating a Windows Executable C-9

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-9

self.turnBy(random.randint(-15, 15))

def main():
game = gameEngine.Scene()
game.setCaption(“Bugs!”)
game.background.fill((0xff, 0xff, 0xff))

lblTitle = gameEngine.Label()
lblTitle.center = (320, 30)
lblTitle.font = pygame.font.Font 9

(“freesansbold.ttf”, 20)
lblTitle.text = “Bugs!”

bugs = []
for i in range(100):

bugs.append(Bug(game))

game.sprites = [bugs, lblTitle]
game.start()

if __name__ == “__main__”:
main()

Even though the program is relatively simple, there’s several things that must be con-
sidered when you try to make a standalone version of the game.

It needs a copy of Python and pygame. All the gory details of Python and
pygame need to be incorporated into the executable, so your program can run
on a computer that doesn’t have Python installed.

Pygame requires SDL and other dependencies. Remember that pygame is
actually a wrapper to the SDL library, which your user may not have. The exe-
cutable needs to incorporate this as well.

Your game has its own resources that need to be included. Your program will
need access to the sound effects, images, and fonts used in the original program.
These files should be preserved in the appropriate data structure so the distrib-
uted version of your program can still find them.

Don’t forget gameEngine! Since this program uses the custom gameEngine
module, the executable version must have access to special module as well.

Fortunately, py2exe and the setup.py program automate most of this for you. You
just have to tell them what to do with a properly written setup.py program.

Appendix C: Distributing Modules and ProgramsC-10

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-10

Writing setup.py for your game
The basic process for creating an executable is similar to building an installable mod-
ule. The process is still based on the distutils.setup() method, but this time, it
gets a little help from an add-on called py2exe. Install this package into your Python
distribution, and then write a setup.py program for your game.

Here’s the setup.py for the Bugs game:

“”” setup.py for bugs game “””

from distutils.core import setup
import py2exe

setup(console = [“bugs.py”],
author=”Andy Harris”,
author_email=”aharris@cs.iupui.edu”,
url=”http://www.cs.iupui.edu/~aharris/pgl”,
data_files=[(‘.’, [“bug.gif”,

“freesansbold.ttf”]
)]

)

The setup.py code for an executable is slightly different from the module version:

1. The setup.py code requires that you to install the py2exe package on
your development system.

import py2exe

By including this import, you make the py2exe package available when you
run the setup.py program.

2. You must indicate a console or window name.

When you create an executable, if you give it a console name, the program will
appear with the DOS command line visible. If you don’t want the console to appear,
specify window rather than console. In either case, the value is a list containing
a string with the name of the main Python file you want to run. The EXE file will
have this name. Note the console and window parameters replace the module
parameter, so you don’t need it when you’re making a standalone application.

setup(console = [“bugs.py”],

3. Include contact information.

Use the standard parameters to include contact information for your program:

author=”Andy Harris”,
author_email=”aharris@cs.iupui.edu”,
url=”http://www.cs.iupui.edu/~aharris/pgl”,

Creating a Windows Executable C-11

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-11

4. Incorporate any other files you need.

Since all my other resources exist in the same directory as my main program,
I have a list containing one tuple of the current directory ‘.’) and a list of files
from that directory that must be included:

[“bug.gif”, “freesansbold.ttf”]

If you have other directories with files that need to be included, create a new
tuple for each directory and a list of files in that directory.

data_files=[(‘.’, [“bug.gif”,
“freesansbold.ttf”]

)]

Information Kiosk
The directory structure you indicate will be recreated on the
user’s computer, so all the file references in the original pro-

gram will still point to the right places.

Running the setup for py2exe
The actual executable program is created by running setup.py. This time, use the
py2exe argument made available when you installed py2exe on your system.

1. Go to the command line.

It’s easiest to run setup.py from the command line because you’ll need to
send parameters to the setup.py program, and you’ll want to see all the
results in the console. Make sure you’re in the directory that contains your game
program and the setup.py program you just wrote.

2. Run setup.py.

Use the following command:

python setup.py py2exe

3. View the flood of information in the console.

Appendix C: Distributing Modules and ProgramsC-12

Step Into the Real World
The end of the process includes some scary-looking warnings about “non-included
dependencies.” These are files normally included with Windows that py2exe does not

include for licensing reasons. The good news is that most users will already have the needed
files installed, because they are installed with Windows itself.

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-12

If all goes well, you’ll see a lot of information scream by in the console.
Once it’s done, you can scroll back through it and see the relatively complete
reporting on what went on through the process. Essentially, the program
encapsulates all the main Python files, examines all the dependencies your
program may need, copies over any files you requested, and builds the exe-
cutable file.

4. Move to the dist directory.

The py2exe process will create two new subdirectories of your game directory,
build and dist. You can safely ignore the build directory, as it is used only
during the process of creating the executable. The dist directory contains
everything your users will really need.

5. Test the executable program.

You’ll find a bunch of support files and one executable in the dist directory.
You should give the executable file the same name as your program (in my case,
bugs.exe). Run it and see if it works.

Distributing your executable in a ZIP file
You have two main ways to package your executable. You can

Put your entire dist directory into a ZIP file. That way users can install it
on their own systems wherever they want.

Create an installation program. This option is a lot easier on the user, but it
requires a little more work from you.

If you want to simply zip up the files, use your favorite compression program (I like
IZarc, a freeware utility for Windows) to stuff all the files in your dist directory into
a file called bugs.zip.

Creating a Windows Executable C-13

Step Into the Real World
If everything worked up to here, but your executable fails to run, look carefully at the
error message in the console. Usually the problem is a file that failed to get trans-

ferred. Fonts are especially prone to this, especially if your program uses a SysFont. You may
have to tweak your setup.py file a bit and run it a few times to get it right. You might also have
to alter your primary program a little bit. For example, I replaced all the calls to pygame.
font.SysFont(“None”) to pygame.font.Font(“freesansbold.ttf”), and things
worked fine.

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-13

Appendix C: Distributing Modules and ProgramsC-14

Step Into the Real World
Users will be baffled by a ZIP file containing all these terrifying filenames. Be sure
to include a readme.txt or readme.html file explaining that all the files must be

installed, but the game is played by simply selecting the executable file.

Making an Installation Program
An Installation Program is a special program that aids in the installation of some
other software. Almost all commercial software uses this type of tool, which allows
you to install a program. It copies all the necessary files, (sometimes) makes short-
cuts, and shields the user from the drudgery of setting up a program. An installer also
often includes an uninstaller that allows the user to safely and easily remove your pro-
gram from the system when it is no longer needed.

You can make your program just a little easier for your users by adding an installer
to the process. Software installation can be a daunting process, but basic Windows
installers aren’t too hard to write if you’re using the terrific NSIS (Null Soft Installation
System) installation system from NullSoft. This open-source tool is used to create
incredibly sophisticated installation programs, but you can also use it to make a sim-
ple installer for your game. Here’s the overview:

1. Prepare your executable.

Presumably you’ve done this through py2exe. Everything you need is stored in
your dist directory.

2. Write an NSI script.

An NSI script is a program in a specialized programming language specifically
created for building installers. (It may sound daunting to learn a new program-
ming language just for making installations, but don’t worry — I have a couple
of tricks that can help you. Read on.)

3. Compile the NSI script.

The NSIS package comes with a compiler that reads the script and uses it to
package all of the files you want into an executable file. If you want, you can
also have it make changes to the Start menu, desktop shortcuts, and uninstallers.

4. Test and distribute.

You’ll need to test your installation on computers that don’t have Python or
pygame installed to make sure everything works as expected.

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-14

Installing NSIS
NSIS is an open-source installation environment for Windows from NullSoft. This
package is essentially a programming language with its own compiler, designed to
help you build custom installation packages. The system can be a bit daunting, but it
is really pretty easy to make it work. Here’s how to get started:

1. Install NSIS.

Download and install the complete NSIS package.

2. Write an NSI script.

NSI scripts can be complex, but the most basic type of installation (that simply
encapsulates all the files into one executable and installs them in a specific
spot) is not terribly complex. I describe exactly such a script in the section
(cleverly) called “Writing a basic NSI script.”

3. Run the main NSIS menu program.

NSIS is really a number of programs, which can all be accessed from the main
program as shown in Figure C-3.

Figure C-3: The NSIS main menu.

4. Run the compiler by clicking the MakeNSISW button in the NSIS menu.

A window that looks like Figure C-4 will appear.

5. Compile the NSI script.

Choose Load Script from the File menu of the NSISW compiler window. If all
goes well, you’ll see a stream of commentary regarding the success or failure of
the process. If all goes well, you can ignore this text. If something went wrong,
a look at the report might help resolve problems.

Making an Installation Program C-15

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-15

Figure C-4: The MakeNSISW compiler interface.

6. Test the installer.

When the script has finished correctly, the program will offer a Test Installer
button. Click this button to run the resulting installation program.

7. Test again on a new computer.

You can’t be sure the installation works until you take it to a new machine that
doesn’t have any of the needed files already on it.

When you run the installer, it will look like Figures C-5 and C-6.

Figure C-5: The installer prompts for an installation directory.

Figure C-6: All the appropriate files are installed in the right place.

Appendix C: Distributing Modules and ProgramsC-16

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-16

Writing a basic NSI script
Here’s the simplest NSI script that will work for the Bugs program. I wrote this script
by modifying the basic example script that comes with NSIS, digging around in the
documentation, and some educated guesswork. Take a look at the whole script first:

; bugsBasic.nsi
; modified from example1.nsi from nullsoft

;--------------------------------

; The name of the installer
Name “bugs Installer Basic”

; The file to write
OutFile “bugInstallBasic.exe”

; The default installation directory
InstallDir $PROGRAMFILES\Bugs

;--------------------------------

; Pages

Page directory
Page instfiles

;--------------------------------

; The stuff to install
Section “” ;No components page, name is not important

;create desktop shortcut
CreateShortCut “$DESKTOP\Bugs.lnk” “$INSTDIR\bugs.exe”

; Set output path to the installation directory.
SetOutPath $INSTDIR

; Put files there

File “bugs.exe”
File “base.pyd”
File “bug.gif”
File “bz2.pyd”
File “cdrom.pyd”
File “constants.pyd”
File “display.pyd”
File “draw.pyd”
File “event.pyd”

Making an Installation Program C-17

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-17

File “fastevent.pyd”
File “font.pyd”
File “freesansbold.ttf”
File “image.pyd”
File “imageext.pyd”
File “joystick.pyd”
File “key.pyd”
File “library.zip”
File “mixer.pyd”
File “mixer_music.pyd”
File “mouse.pyd”
File “movie.pyd”
File “msvcr71.dll”
File “multiarray.pyd”
File “overlay.pyd”
File “python24.dll”
File “rect.pyd”
File “rwobject.pyd”
File “SDL.dll”
File “SDL_image.dll”
File “SDL_mixer.dll”
File “SDL_ttf.dll”
File “smpeg.dll”
File “sndarray.pyd”
File “surface.pyd”
File “surfarray.pyd”
File “surflock.pyd”
File “time.pyd”
File “transform.pyd”
File “umath.pyd”
File “unicodedata.pyd”
File “w9xpopen.exe”
File “zlib.pyd”
File “_dotblas.pyd”
File “_GLU__init__.pyd”
File “_GL__init__.pyd”
File “_numpy.pyd”

SectionEnd ; end the section

Here’s how this very basic program works:

1. Give the installer a name.

The Name variable indicates the title of the installation dialog box.

; The name of the installer
Name “bugs Installer Basic”

Appendix C: Distributing Modules and ProgramsC-18

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-18

2. Indicate the filename of the installer program.

The OutFile variable determines the filename of the installation program itself.

; The file to write
OutFile “bugInstallBasic.exe”

3. Specify a default installation directory.

The installation program will allow the user to choose a specific directory, but
it’s customary to suggest a location. The $PROGRAMFILES constant indicates
the user’s standard Program Files directory.

; The default installation directory
InstallDir $PROGRAMFILES\Bugs

4. Specify the pages to display.

Each dialog box that pops up in this simple script is called a page in NSIS
vocabulary; the next section indicates which of these pages should be displayed.
In this case, I want to display the directory page (which prompts the user for
an installation directory) and an instfiles page (which tracks progress as
the various files are installed).

Page directory
Page instfiles

5. Create the main section.

In a complex installation, you may want to allow the user to install specific
parts of the program (for example, language extensions or graphics filters).
Each component requires its own section in the NSI code. Since this is such a
simple program, it will have only one section.

; The stuff to install
Section “” ;No components page, name is not important

6. Create a desktop shortcut.

If you want, you can have your installer add shortcuts to the Start menu and/or
the desktop. I personally don’t like Start menu shortcuts, but I do like having a
shortcut on the desktop (that I can then move wherever I want). The
createShortcut command makes this pretty easy to do:

;create desktop shortcut
CreateShortCut “$DESKTOP\Bugs.lnk” 9

“$INSTDIR\bugs.exe”

Information Kiosk
You can also change the shortcut’s icon to something else, if
you don’t like the generic icon provided by py2exe. Look up

the details in the online help that comes with NSI.

Making an Installation Program C-19

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-19

7. Set the output path.

Use the directory obtained from the directory page for the subsequent file-
extraction commands.

; Set output path to the installation directory.
SetOutPath $INSTDIR

Information Kiosk
Once the directory page has run, the variable $INSTDIR
contains the directory the user has chosen for installing the

program.

8. Extract the files.

Indicate each of the files you want to extract to the directory. This is how the
program will know which files to include in the installation. It’s easiest if the
NSI script is in the same directory as the files you want to transfer, so you can
use a simple reference to indicate the filename.

File “bugs.exe”
File “base.pyd”

Information Kiosk
I only included a couple of files here, to show the basic idea.
The complete NSI script has a list of all the files in the dist

directory created by py2exe. Be sure to incorporate all the files in the
dist directory that were generated when you ran py2exe. Most of the
files are the various parts of Python that must be included with your origi-
nal program.

9. Close the section.

The last required element is to close up the main (and only) section.

SectionEnd ; end the section

Creating a more elaborate script with HM NIS Edit
You can use NSIS to create much more elaborate installations, if you spend the time
to learn the language. If you want anything more elaborate than the basic script indi-
cated here, you should download the excellent HM NIS Edit program by Hector
Mauricio Rodriguez Segura (http://hmne.sourceforge.net). This program is
a text editor specializing in the NSI scripting language. It includes a wizard that makes
very professional installations easily. Follow these steps:

Appendix C: Distributing Modules and ProgramsC-20

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-20

1. Download and install HM NIS Edit.

Install the program normally and start it up.

2. Create a new script using the wizard.

From the File menu, pick New Script from Wizard.

3. Fill in general application information.

Figure C-7 shows the Application Information screen.

Figure C-7: Enter basic information about your application.

4. Choose setup options.

Determine the name and icon for your setup.py file, and the language(s) you
want to include in your setup, as in Figure C-8. (If you aren’t sure of any of
these options, you can use the defaults pretty safely.)

Figure C-8: Determine setup options.

Making an Installation Program C-21

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-21

5. Indicate the default directory and the license file.

Figure C-9 shows this dialog box. The default directory is the suggested instal-
lation directory of your file. The license file can be any text file. If you remove
all text from the License file textbox, no license will be shown.

Figure C-9: Set up a default directory and indicate a license file if appropriate.

6. Pick the application files to install.

Pick all the files you want to incorporate in your final project. You can pick
files individually, or all files in a directory. Figure C-10 shows the file screen.

Figure C-10: Determine files to include.

7. Set application links.

Pick the types of shortcuts to include with the application, as shown in
Figure C-11.

Appendix C: Distributing Modules and ProgramsC-22

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-22

Figure C-11: Determine which shortcut should be added.

Although the dialog talks about choosing an Icon, you’re really determining the
shortcut at this point. The icon is pre-determined.

8. Execute the application after setup.

You might want the program to run after the setup, or a readme file to appear.
You can choose either option in the form shown in Figure C-12.

Figure C-12: Choose any final actions you want to occur after setup.

9. Create an uninstaller.

Uninstallers are nice because they undo any modifications made to the system.
Add an uninstaller automatically with this option, as shown in Figure C-13.

10. Save, modify, and test.

When the wizard finishes, it produces an NSI script in the NIS editor. You can
modify this script, compile and test it from within the editor, as shown in
Figure C-14.

Making an Installation Program C-23

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-23

Figure C-13: Create an uninstaller if you wish.

The triangular Run button runs the script, and you can see the installation run-
ning in the foreground of Figure C-14.

Figure C-14: Test your installation to make sure it works correctly.

Appendix C: Distributing Modules and ProgramsC-24

068229_bc_appc.qxp 12/21/06 11:46 AM Page C-24

